The El Trébol Landfill Landfill Gas Pre-Feasibility Study: Pump Test Construction, Monitoring and Data Collection

David Flores and Alex Stege SCS Engineers

USAID/USEPA Workshop, Guatemala City, Guatemala October 25, 2005

Presentation Topics

- Project overview
- Objectives of pump test program
- Pump test elements and equipment
- Pump test construction
- Pump test monitoring activities
- Summary of data collected
- Interpretation of pump test results

Project Overview

- Objectives of Landfill Gas Feasibility Study and Pump Test:
 - Assess the technical and economic feasibility of the development of an LFG control and utilization project at the El Trébol Landfill.
 - Quantify the potential greenhouse gas (GHG) emissions reduction from implementing a project.
 - Provide a tool to assist potential project developers in making informed decisions regarding additional investigations or moving forward with a project at the landfill.

Objectives of the Pump Test Program

- To measure vacuum (pressure) and flow relationships while actively extracting LFG from the landfill.
- To measure sustainable methane levels of the extracted LFG during the pump test.
- To measure vacuum (pressure) in probes to estimate the lateral vacuum influence of the active pump test.
- To measure oxygen levels of the extracted biogas during the pump test to check for air infiltration through the landfill cover soil during pump test.
- Utilize the results of the pump test to refine the projections of landfill gas recovery.

Pump Test Elements and Equipment

- 3 extraction wells installed in triangle pattern ~150-200 ft apart:
 - Well 1 75 ft (23 m) deep
 - Well 2 100 ft (30 m) deep
 - Well 3 100 ft (30 m) deep
- 9 shallow (2 m) monitoring probes 3 around each well
 - Probes A, B, and C at 5m, 15m, and 25m distance from each well

Pump Test Elements and Equipment (cont.)

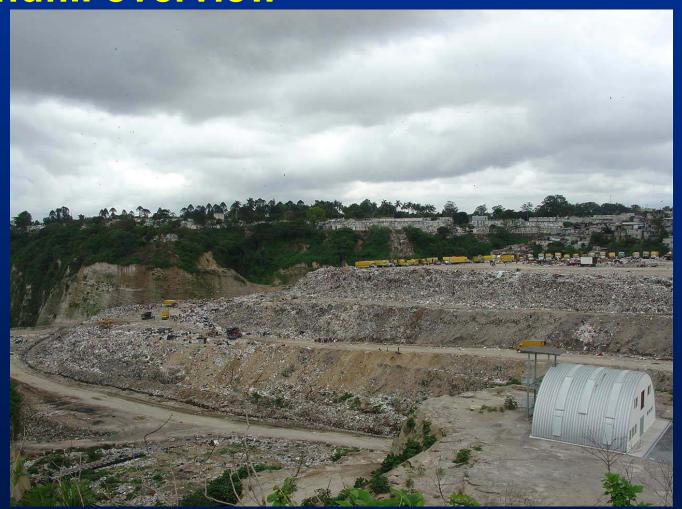
- An electrically-powered mechanical blower to exert a vacuum on the extraction wells and withdrawal LFG from the wells.
 - The blower was powered on-site by a portable diesel powered electrical generator.

Pump Test Elements and Equipment (cont.)

- Interconnection of the three extraction wells and the blower with solid piping.
 - Flow control valves were installed at each extraction well and the blower inlet to allow adjustment of vacuum and flow both system-wide and at individual wells.

Pump Test Elements and Equipment (cont.)

- Gas testing, and flow and pressure monitoring equipment.
 - Gas quality (methane, oxygen) and static pressure measurements were taking using a Landtec GEM 500 Infrared Gas Analyzer (GEM 500).
 - Gas flow measurements were taken using an Accu-Flow meter and the GEM 500.



Pump Test Construction

Landfill overview

Pump Test Construction (cont.)

Disposal operations

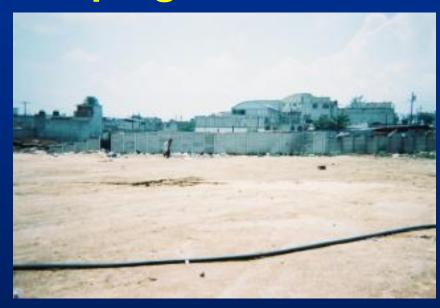


Pump Test Construction

Extraction well construction

Pump Test Construction (cont.)

Problems with liquids in extraction wells



Pump Test Construction (cont.)

Piping and blower

Pump Test Monitoring Activities

- Measured methane %, oxygen %, CO₂%, balance gas %, vacuum, and LFG flow at wells
- Measured methane %, oxygen %, CO₂%, balance gas %, and vacuum in monitoring probes
- Measured static conditions on July 26
- Measured active conditions July 29 –
 August 9 (2 4 times per day)

Pump Test Monitoring Activities (cont.)

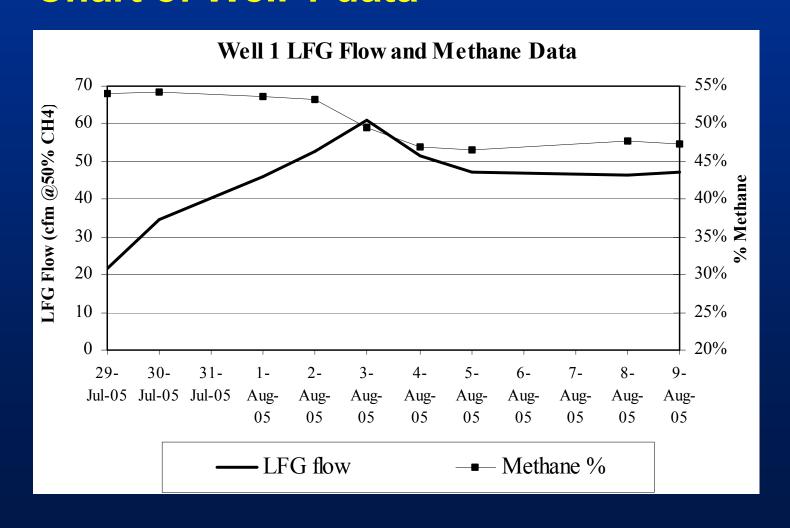
Passive conditions

- Measurements before blower turned on and vacuum applied for baseline conditions
- Extraction well data:
 - Good gas quality high methane (>50%) and low oxygen in Wells 1 and 3;
 - Low gas quality in Well 2
- Monitoring probe data: methane >37% in 8 of 9 probes shows presence of landfill gas near landfill surface

Pump Test Monitoring Activities (cont.)

- Active conditions blower turned on & vacuum applied
 - Extraction well data
 - Well 1: Good gas quality (average 50% methane),
 vacuum, and flow rates
 - Well 2: Fairly poor gas quality (average 28% methane) and no flow
 - Well 3: High gas quality (average 58% methane), but little or no flow
 - Monitoring probe data: No vacuum observed in any of the 9 probes – no well influence?

Summary of Data Collected

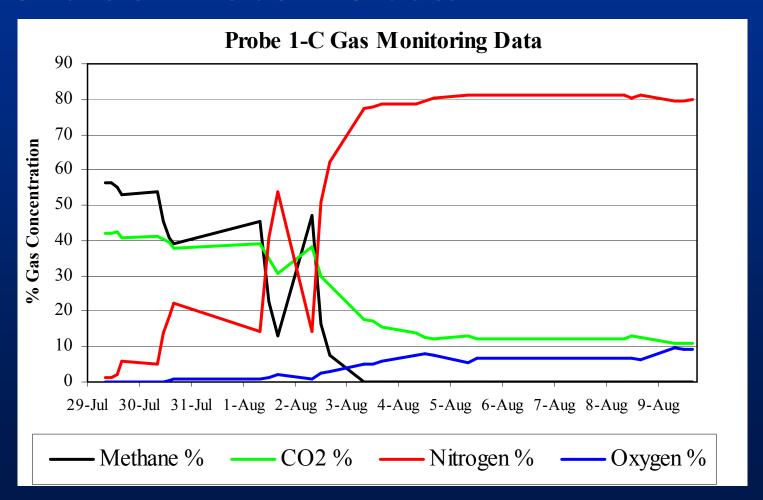

- Extraction well data only Well 1 provided good, useable results
 - Initial high methane levels (54%) declined and stabilized at 47% during second half of test
 - LFG flows increased to a peak of 61 ft³/minute on Aug. 3, then declined and stabilized at about 48 ft³/minute during second half of test
 - Stabilization of methane % and flow rates indicates steady-state conditions, where gas extraction rates are ~ equal to generation rates

Summary of Data Collected (cont.)

Chart of Well 1 data

Summary of Data Collected (cont.)

Monitoring probe data


- No vacuum observed in probes near Wells 2 and 3 since no gas flow established in these wells
- No vacuum in probes near Well 1, but trends in methane and other gases in outermost probe (at 25m distance) indicate influence
 - Methane declined to 0% by August 3
 - Steady decreases in CO₂ and increases in oxygen and balance gas (nitrogen)
 - Results indicate onset of air intrusion probe is within the "radius of influence" of Well 1

Summary of Data Collected (cont.)

Chart of Probe 1-C data

Interpretation of Pump Test Results

- Step 1: Estimate the maximum steady-state
 LFG flow achieved in the pump test
 - Equal to the maximum sustained flow at Well 1 without air intrusion.
 - This was estimated to be the average for the August 4-9 period = 48.1 ft³/minute (81.7 m³/hr) at 47.1% methane = 45.3 ft³/minute (77 m³/hr) at 50% methane

Interpretation of Pump Test Results (cont.)

- Step 2: Estimate the radius of influence (ROI) of extraction Well 1
 - ROI > 25 m since Probe 1-C showed evidence of being within influence of Well 1
 - ROI of extraction well in full-scale system is typically 1.25-2.5 well depth
 - Based on high moisture content of waste and presence of liquids, ROI expected to be low end of range = ~1.5 x well depth
 - ROI estimate = 1.5 x 23 m depth = 35 m

Interpretation of Pump Test Results (cont.)

- Step 3: Estimate the Well 1 unit recovery rate (in ft³ of LFG per pound of waste)
 - Step 3a: Calculate volume of waste within influence of Well 1 = 178,312 m³
 - Step 3b: Estimate refuse density = 1,230 lbs/yd3
 - Step 3c: Estimate tons of waste within influence = 143,403 tons
 - Step 3d: Calculate annual LFG flow from Well 1 = 23.8 million ft³/yr
 - Step 3e: Calculate unit recovery rate = 0.083 ft³/lb-yr

Interpretation of Pump Test Results (cont.)

- Step 4: Extrapolate Well 1 unit recovery rate to total waste in landfill
 - Well 1 unit recovery rate (0.083 ft³/lb-yr) x estimated amount of waste in place and available for LFG recovery (3,756,504 tons) = 1,130 ft³/minute
 - This is the estimate to be used for adjusting the LFG model.

Summary and Conclusions

- Pump test successfully demonstrated LFG extraction at one of three wells
- Demonstrated steady-state Well 1 LFG extraction rate of 48.1 ft³/minute (81.7 m³/hr) at 47.1% methane
- Results imply potential LFG recovery from the landfill of 1,130 ft³/minute

Questions?

www.epa.gov/lmop

Brian Guzzone

guzzone.brian@epa.gov 202.343.9248

Alex Stege

astege@scsengineers.com 602.840.2596

